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"The theory that would not die..."

Sharon McGrayne, Science Writer

!...arguably the most powerful mechanism created for processing data and knowledge."
Jim Berger, Statistician
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In the social domain, priors are stereotypes.
Locksley et al. (1980)
Krosnick et al. (1990)
Jussim (2012)

The law privileges Egalitarian values
over Bayesian principles.
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Artificial Intelligence
that's more Bayesian than egalitarian

Google

Translate

English Spanish French Turkish - detected ~ ".. English Spanish Arabic ~
O bir doktor. *  He is a doctor.

O bir hemsire. She is a nurse.

) 28/5000 0o <
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3. Google Images as a proxy for the social environment
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What judgments do people make when
Bayesian principles and egalitarian values are at stake?

A man performed surgery.
A woman performed surgery.
Who's more likely to be a doctor?

Man Woman
Great, Great,
Higher X but not = Updz?lted Lower X but not — Upd%\ted
belief belief
perfect perfect

Cao, Kleiman-Weiner, & Banaji (2018), Psych Sci
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Unlike other nursing roles, a surgical care practitioner is involved with the patient
every step of the way
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“I agree with Person X because statistics indicate that there
are less women surgeon [sic] compared to men. However,
this does not mean | like it. It is sad that women are under-
represented than man [sic] in surgery, and i believe that
anyone who would make this statement is sexist.”
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“sexist f*** | cant stand that bigoted hate s***
there really is no place for people who think such ways”

“Person X must have a mental deficiency...
stupid beyond imagination.”
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What judgments do people make when
Bayesian principles and egalitarian values are at stake?

How likely is @ man vs. a woman to be a doctor given that each
performed surgery?

Cao, Kleiman-Weiner, & Banaji (2018), Psych Sci
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. People undermine their commitment to egalitarian
values by making Bayesian judgments



What judgments do people make when
Bayesian principles and egalitarian values are at stake?

2. Formalizing "egalitarian values'



How do you go from something like this...

to something like this...
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Not egalitarian

Unequal false positive rates, FPRs
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-galitarian

Equal false positive rates, FPRs
P(Shoot | Unarmed, White) = P(Shoot | Unarmed, Black)

Equal false negative rates, FNRs
P(Undertreat | In Pain, White) = P(Undertreat | In Pain, Black)

Equal positive predictive values, PPVs
P(Hire | Qualified, Female) = P(Hire | Qualified, Male)
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Why these three ways of thinking about
egalitarian values?

FPR,0u0 2 = FPR

Group A Group B
I:NRGroup A~ I:NRGroup B
PID\/Group AT IDP\/Group B

When base rates between Group A and Group B differ, all three
definitions cannot be simultaneously met. At least one must be given up.

Kleinberg, Mullainathan, & Raghavan (2016)
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Machine Bias

There's software used across the country to predict future criminals. And it's biased
against blacks.

by Julia Angwin, Jeff Larson, Surya Mattu and Lauren Kirchner, ProPublica
May 23, 2016




Machine Bias

There's software used across the country to predict future criminals. And it's biased
against blacks.

by Julia Angwin, Jeff Larson, Surya Mattu and Lauren Kirchner, ProPublica
May 23, 2016

Two Drug Possession Arrests

DYLAN FUGETT BERNARD PARKER

Prior Offense Prior Offense
1attempted burglary 1 resisting arrest
without violence

Subsequent Offenses
3 drug possessions Subsequent Offenses
None

LOW RISK HIGHRISK 10




False Positives, False Negatives, and False
Analyses: A Rejoinder to “Machine Bias:

There’s Software Used Across the Country
to Predict Future Criminals. And It’s Biased
Against Blacks.”

Anthony W. Flores

California State University, Bakersfield

Kristin Bechtel

Crime and Justice Institute at CRJ

Christopher T. Lowenkamp

Administrative Office of the United States Courts
Probation and Pretrial Services Office
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Summary

People undermine their commitment to egalitarian
values by making Bayesian judgments

. Formalizing "egalitarian values"

. Google Images as a proxy for the social environment



Closing thoughts

Life is mostly between-subjects.
Make it more within-subjects.

Need for theory on specifying egalitarian principles.

Relatively low-cost tweaks might go a long way
towards promoting inclusion.
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